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ABSTRACT  In order to test the control portion of communication software, specifications are usually 

first abstracted to state machines, then test cases are generated from the resulting machines.  In 

practical applications, the state machines obtained from the specifications are often partially-specified, 

and sometimes nondeterministic.  We come out with two methods for test generation.  The first 

generates test suites for the software that is modeled by partially-specified finite state machines 

(PFSMs) with respect to a conformance relation, called quasi-equivalence.  The method is a 

generalized version of the Wp-method and applicable also to completely-specified deterministic 

machines which are specific class of PFSMs.  This method yields usually smaller test suites with full 

fault coverage for each class of machines than the existing methods for the same class which also 

assure full fault coverage.  The second method generates test suites to test deterministic 

implementations against their partially-specified nondeterministic finite state machine (PNFSM) 

specifications,  with respect to a conformance relation, which we call determinization relation. 
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1. INTRODUCTION 

 

In the area of communication software, systematic approaches have been developed for protocol 

conformance testing [Rayn87, Boch89], and the selection of appropriate test suites [Fuji91, Pitt90, 

Sidh89, Sari87, Chow78].  These approaches can produce significant economic benefits [Aho90, 

AT&T90].  Usually, the specifications of communication software are first abstracted to state 

machines, then test cases are generated from the resulting machines [Lee91, Roug89]. A considerable 

amount of work has been done to generate test cases for completely-specified, deterministic finite state 

machines (FSMs) [Fuji91, Sidh89, Sari84, Chow78, Gone70, Vuon89, Sabn85, Nait81, Vasi73].  

However, the specifications of communication software are often partially  (or incompletely) 

specified, and may be nondeterministic.  For example, communication protocols are often partially 

specified [Sari84].  A major specification language for communication software, ESTELLE [Budk87, 

ISO9074] supports the description of partially-specified behavior.  Furthermore, in practical 

applications, specifications may be nondeterministic but their implementations are deterministic.  In 

nondeterministic state machine specifications, for a given state, several transitions may be associated 

with the same input, and they represent several choices which valid implementations can have.  During 

implementation process, only one of the choices (transitions) is required to be implemented.  Such an 

implementation process is also called determinization process.   Some work has been reported on test 

generation for partially-specified deterministic machines [Petr91, Evtu89]; however, no test generation 

method has been reported for checking nondeterministic specifications against their implementations.  

 

We study in this paper test generation for the finite state machines that could be both  partially-

specified and  nondeterministic, guided by pre-defined conformance relations. 

 

In the area of protocol conformance testing, the meaning of conformance between a specification and 

the valid implementations is specified either by informal  description, or by precisely-defined 

conformance relations.  Usually, the formally-defined conformance relations  are preferable since they 

provide a means to direct the development of test generation methods and a basis to analyze the 
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validity of the methods. For completely-specified deterministic finite state machines (FSMs), partially-

specified deterministic finite state machines (PFSMs), there are commonly-defined conformance 

relations in the literature  [Fuji91, Chow78, Vasi73, Star72, Gill62].  However,  no conformance 

relation has been reported  for partially-specified nondeterministic finite state machines (PNFSMs), 

except for some general study on the specialization of object behaviors and requirement specifications 

[Boch92].   

 

In Section 2, after formally defining PNFSMs and several related notations, we first describe a 

conformance relation, called quasi-equivalence, for PFSMs [Gill62].  We then introduce a 

conformance relation between PNFSM specifications and their PFSM implementations, called 

determinization  relation.  The relation  is defined in terms of input/output traces in accordance with 

black-box testing strategy.  When the relation is applied to FSM and PFSM specifications, which are 

specific cases of PNFSMs, it coincides to the corresponding conformance relations given in the 

literature.   We also define several concepts which are related to test generation. 

 

Guided by the conformance relations,  in Section 3, we come out with two test generation methods.  

The first method is to generate test suites from PFSMs (partially-specified deterministic finite state 

machines); and the resulting test suites can be used to test PFSM implementations against their 

specifications with respect to the quasi-equivalence relation.  The method is a generalized version of 

the Wp-method [Fuji91], obtained by combining the ideas given in [Fuji91] and [Evtu89]. The second 

one is to adaptively generate test suites from so-called observable PNFSMs for testing the 

determinization relation.  The OPNFSMs have the property that a state and an input/output pair 

uniquely determine the next state,  while a state and an input alone do not necessarily determine a 

unique next state and an output.  The OPNFSMs are  a specific class of PNFSMs that have a lower 

degree of nondeterminism. 

 

In Section 4, we compare our methods with other test generation methods, on the basis of applicability, 

fault coverage and the size  of test suites.  This method yields usually smaller test suites with full fault 
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coverage for each class of machines than the existing methods for the same class which also assure full 

fault coverage. 

 

We conclude in Section 5 by discussing some extreme case of the length of test cases and the upper 

bound of the size  of test suites,  for partial machines.  

 

2. NOTATIONS AND ABSTRACT TESTING FRAMEWORK 

 

We first give in this section the definition of PNFSMs, then present  conformance relations between 

specifications and implementations under the black-box testing strategy (where implementations  are 

assumed to be black-boxes), and finally define several concepts which are related to testing. 

   

2.1 Partially-specified nondeterministic finite state machines (PNFSMs) 

 

We first define PNFSMs in a traditional form similar to that given in [Star72] for NFSMs.  For the 

convenience of presentation, we then define additional notations for PNFSMs similar to that for 

labeled transition systems [Brin88,  Fuji91b, Fuji91c]. 

 

DEFINITION  Partially-specified Nondeterministic Finite State Machine : 

A Partially-specified Nondeterministic Finite State Machine  (PNFSM) is defined as a 5-tuple (St, Li, 

Lo, h, S0)  where: 

(1) St  is a finite set of states, St={S0, S1, ..., Sn-1}. 

(2) Li  is a finite set of inputs. 

(3) Lo  is a finite set of outputs. 

(4)  h   is a behavior function:  

          h :   d  =>  powerset(St  Lo) \{�}        where 

 (i) d⁄St 6 Li  (PNFSM becomes completely specified if d=St 6 Li); 

 (ii) � denotes the empty set. 
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Let P, Q�St, a�Li  and  b�Lo.  We write P-a/b->Q to denote (Q, b)�h(P,a);  P-a/b->Q is called a 

transition from P to Q with label  a /b.  

(5) S0 is the initial state, which is in St.   

 

We assume that  a "reliable" reset input  r   is available in any implementation of a PNFSM such that 

upon receiving r   in any state the implementation returns to the initial state.  

 

We often use in the following the term "partial machine" to refer to a PNFSM, which may be 

deterministic or not.  A partial machine can be represented by  a directed graph in which the nodes are 

the states  and the directed edges are transitions linking the states.   Figure 1 shows an example of such 

a machine. 

Figure 1.  An example of a PNFSM
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For the convenience of the presentation, we also introduce in Table 1 several notations. 
 
                           Table 1.  Notation for PNFSMs 

    notation                             meaning 
    L                       Li 6  Lo, a set of input/output pairs; u denotes such a pair 
                            is the empty sequence.   
    L*                     set of sequences over L; x denotes such a sequence. 
                             Note that �L*  
    P\-u->               For P, Q �St, not( Q( P-u->Q)) 
    P==>Q           P=Q  
    P=a/b=>Q        P-a/b->Q   
    P=x=>Q          P1, ..., Pk-1�St (P=P0=u1=>P1...=uk=>Pk=Q) 
                                                                                          where  u1,...,uk�L, and  x=u1...uk 

    P=x=>              Q�St (P=x=>Q) 
    Tr(P)               Tr(P)={ x |  P=x=>} 
    xin                    For x�L*, xin  is an input sequence obtained by deleting all outputs in x 
                             ( note that xin�Li* ) 
    Vin                   For V⁄L*,  Vin={xin |  x�V } 
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 Trin(P)               Trin(P)={ xin |  P=x=>  },  
                            ( note that  Trin(P)=Li* for each state P of completely-specified NFSMs) 

  

DEFINITION Initially connected PNFSM: 

Given a PNFSM S (St, Li, Lo, h, S0),  S is said to be initially connected   iff 

Si�St x�L*  (S0=x=>Si).    

 

In initially connected PNFSMs,  every state is reachable from the initial state.  Without loss of 

generality, we assume  that all machines considered in the rest of the paper are initially connected.   If 

a given machine S is not initially connected, we may consider only such a submachine which is a 

portion of S consisting of  all states and transitions that are reachable from the initial state of S.  The 

unreachable states and transitions of machines do not affect the behavior. 

 

We first define so-called  observable PNFSMs,  a concept originally described in [Star72] for 

completely specified machines, which represents a restricted form of nondeterminism. 

 

DEFINITION   Observable  PNFSMs  (OPNFSMs) : 

A PNFSM is said to be observable  if for every state S �St, and every input/output pair a/b �L, there is 

at most one transition;  that is,  S-a/b->S1 & S-a/b->S2 ==> S1=S2.    

 

As an example, Figure 1 shows an OPNFSM.  OPNFSMs  are a subclass of partial machines.  In 

observable machines, a state and an input/output pair can uniquely determine at most one next state.  

However, an  OPNFSM may still be nondeterministic in the sense that a state and an input cannot 

determine a unique next state and a unique output.  We note that all deterministic machines are 

observable. 

 

Given a state P in  a PNFSM,  we say that P is deterministic  if no two outgoing transitions from P 

have the same input;  and we say that P is nondeterministic  if P is not deterministic.   For  a PNFSM,  

if every state is deterministic,  then the machine is deterministic;  and we call it a partial  FSM 



                                                                                                            22/09/2012                       Page  7 

(PFSM).   We now define in the following several specific classes of PFSMs, which are useful 

concepts for test generation.   

 

DEFINITION:  Reduced PFSMs : 

An  PFSM is reduced   iff  Si, Sj�St ( i�j    ==>  Tr (Si)�Tr (Sj)).   

 

A PFSM is reduced if and only if none of its states accept the same set of input/output sequences. 

 

DEFINITION:  Distinguishable  states: 

Given a pair of states Si and Sj,  Si and Sj are distinguishable,  written  Si— Sj,    iff           

                 x�Tr(Si)&Tr(Sj) (xin�Trin(Si)Trin(Sj))  

where      Tr(Si)&Tr(Sj)=(Tr(Si)Tr(Sj)) \(Tr(Si)Tr(Sj)). 

If  a pair of states are not distinguishable, we say that they are indistinguishable.      

 

Two states are distinguishable if and only if there is an input/output sequence x such that x can be 

accepted by only one of the two states but the input sequence xin can be accepted by the both of them. 

 

DEFINITION:  Minimal PFSMs: 

A  PFSM is minimal   iff  Si, Sj�St  ( i�j  ==>  Si—Sj ).   

 

A PFSM is minimal if and only if every pair of states are distinguishable. 

 

A minimal PFSM is reduced, but a reduced PFSM is not necessarily minimal. Given a minimal 

machine S, each state of P is distinguishable from all other states of P, which is not necessarily true for 

a reduced machine.  If we consider a completely specified machine, then  a reduced  machine is also 

minimal.  

 

We also need the following concepts for presenting our method. 
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DEFINITION:  prefix set   pref(V) for a given  set of sequences: 

Given a set  of sequences V�Li* ,   

        pref(V)={t1 | t2�Li* & t1.t2�V}    where t1.t2 is the concatenation of t1 with t2.   

 

DEFINITION:  Concatenation of sets of i/o sequences or input sequences: 

Assuming V1, V2 ⁄L* (or V1, V2 ⁄Li*),    the concatenation of sets, written ".",  is defined as follows: 

   V1.V2 =  { t1.t2 |  t1�V1 &  t2 �V2}   where t1.t2 is the concatenation of t1 with t2.  

     We write     Vn =  V.Vn-1    for  n > 1  and     V1 =  V.         

 

2.2. Conformance relations 

 

Before any study  on how to generate test suites, the following question must first be answered: under 

the black-box testing strategy, what kind of conformance relation between a specification and the 

corresponding implementation is expected to hold ?  

 

For (completely-specified, deterministic) FSMs, there is a widely-accepted conformance relation, 

called equivalence, (see, e.g.,  [Fuji91, Chow78, Vasi73, Star72, Gill62]),  which requires that a 

specification and its implementation produce the same output sequence for every input sequence.  We 

define in this section conformance relations for machines in terms of the relations between their initial 

states.  

 

DEFINITION Equivalence: 

The equivalence  relation between two states P and Q in PFSMs, written 

      P≠Q,  holds      iff      Tr(P) =Tr(Q)  

Given  two PFSMs S and I with their initial states S0 and I0,  we write S≠I  iff  S0≠I0.   
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A reduced machine has no equivalent states.  For PFSMs, a conformance relation, called quasi-

equivalence, was presented in [Gill62, Star72, Evtu89].  The relation requires that, for every input 

sequence that can be accepted by a specification, the specification and its implementation produce the 

same output sequence.   

 

DEFINITION  Quasi-equivalence: 

The quasi-equivalence  relation  between two states P and Q in PFSMs, written 

     Pquasi Q,  holds      iff   Tr(P)⁄Tr(Q) 

Given  two PFSMs S and I with their initial states S0 and I0,  we write SquasiI  iff   S0quasiI0.   

 

The quasi-equivalence  relation is not an equivalent relation since it is not symmetric.   

 

However, it is quite often in practical applications that specifications are nondeterministic and their 

implementations are deterministic.  For a state P and a set of transitions starting from P,  we say that in 

state P, an input a  associates  the set of transitions if the input symbol of every transition in the set is 

a.  In nondeterministic state machine specifications, for a given state, several transitions may be 

associated with the same input, and they represent several choices which valid implementations can 

have.  During implementation process, only one of the choices is required to be implemented.  Such  

an implementation process is also called determinization process.   We now formalize the conformance 

relation between PNFSM specifications and their PFSM implementations, which we call 

determinization relation. 

    

DEFINITION Choice: 

The choice  relation between a PNFSM S and a PFSM S', written 

      SchoS',  holds      iff  S' can be obtained from S in the following fashion:  

For every P�St and  every a �Li, if the input a  associates more than one transitions from the state P, 

keep one of them and eliminate the rest of transitions.  We say that S' is chosen  from S.   
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Figure 2.  A  PFSM chosen  
   from the PNFSM of Figure 1
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DEFINITION Determinization 

The determinization relation between a PNFSM S and a PFSM I, written  SdetI,  holds    iff   

S'(SchoS' & S'quasiI).   

 

We present  in the following the relations among the above-defined conformance relations . 

 

THEOREM 1: Given two  PNFSMs S and I,  assuming that they have common Li and Lo, we have 

the following statements: 

(i)                S≠I     <==>   SquasiI   &  IquasiS 

(ii)  if S and I are (deterministic) PFSMs,   then  SdetI    <==>    SquasiI  

(iii)  if S and I are (completely-specified, deterministic) FSMs,   then 

                     SquasiI     <==>   S≠I  <==>   SdetI .     

 

The above theorem is evident from the corresponding definitions. 

 

2.3.  Definitions related to testing 

 

We define in this section several concepts which are related to testing finite state machines. 

 

DEFINITION  Test case   and test suite : 

For a given PNFSM,  a sequence t of a finite length is a test case   if t�Trin(S0).  A test suite  is a finite 

set of test cases.    
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DEFINITION : Equivalence  with respect to a given input set: 

The equivalence  relation between two states P and Q,  with respect to a given input set �⁄Li*,  written   

P=�Q,  holds       iff     ¢x�Tr(P)&Tr(Q) (x�Trin(P)Trin(Q) ==> xin��). 

Given  two PNFSMs S and I with their initial states S0 and I0,  we write S=�I  iff   S0=�I0.   

 

The equivalence  relation with respect to a given input set �requires that, for every input sequence in  

�that can be accepted by both a specification and its implementation, the specification and its 

implementation produce the same  output sequence.   

 

We note: (i) S≠I     iff     �⁄Li*S =� I),  and (ii)  SquasiI     iff     �⁄Trin(S) S =� I). 

 

3. TEST GENERATION 

 

We present in this section two test generation methods.  The first method is to generate test suites from 

PFSMs (partially-specified deterministic finite state machines); and the resulting test suites can be 

used to test PFSM implementations against their specifications with respect to the quasi-equivalence.  

The second one is to adaptively generate test suites from PNFSMs (partially-specified 

nondeterministic finite state machines) for testing the determinization relation. 

 

3.1. Test generation for  PFSMs with respect to quasi-equivalence 

 

We first define several key concepts for presenting our method, then give an algorithm of generating 

test suites, and finally present a theorem for establishing the validity of the algorithm.   

 

DEFINITION:  Characterization set   W: 

Given an  PFSM,  a characterization set   is a minimal set W ⁄Li* such that:  

Si, Sj�St   ( Si—Sj  ==>   x�Tr(Si)&Tr(Sj) (xin�Trin(Si)Trin(Sj)W) ).   
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The above definition is generalized from the concept of the characterization set for FSMs given in 

[Chow78] to PFSMs.  We omit the algorithm for generating characterization sets because of the length 

limitation of the paper.  One can develop such an algorithm by borrowing the ideas of generating 

characterization sets for FSMs pointed out by [Koha70, Chow78]. 

 

DEFINITION:  State identification sets  {W0, W1, ..., Wn-1}: 

Given a  PFSM with n states and  a characterization set  W, {W0, W1, ..., Wn-1}  is a tuple of state 

identification sets   if,  for  i=0, 1, ..., n-1,  Wi is a minimal set such that  

(i)  Wi⁄Trin(Si)pref(W), and 

(ii) for  j=0, 1, ..., n-1,   (Si—Sj,  ==>   x�Tr(Si)&Tr(Sj) ( xin�Wi) ).   

 

The above definition is generalized from the concept for FSMs given in [Fuji91] to PFSMs.  

 

DEFINITION: subscripts(A) for a given state set: 

For A⁄St, subscripts(A) is a string of integers i1, i2, ..., ik,   

                        where  i1 i2 ...ik and A={Si1 Si2, ..., Sik }.   

 

Given two sets of states A and B, we say that the subscripts of A is smaller than that of B if 

subscripts(A) precedes   subscripts(B) in lexicographic order.  The notation subscripts(A) for a given 

set of states A is needed for defining a so-called maximal set of pairwise-distinguishable states  f(Si) 

for a given state  Si for PFSMs.  A set of states are pairwise-distinguishable  if and only if every pair 

of states in the set are distinguishable.  A maximal set of pairwise-distinguishable states is a set such 

that it is not contained by any other set of pairwise-distinguishable states.  A maximal set of pairwise-

distinguishable states f(Si) for a given state Si is the set with the smallest subscript among the maximal 

sets of pairwise-distinguishable states that contains Si, which is formally defined as follows.  
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DEFINITION: Maximal  set of pairwise-distinguishable states  f(Si) for a given state  Si:  

Given a  PFSM and a state Si�St, f(Si) is defined as a set A⁄St  such that: 

(i)  Si�A, and 

(ii)  Sk, Sj�A (k�j ==> Sk—Sj), and 

(iii) there is no  B⁄St such that 

                       (i') Si�B, and  

                       (ii')  Sk, Sj�B ( k�j ==> Sk—Sj), and 

                      (iii')  |B| > |A| or 

|B|=|A|,  and subscripts(B) precedes   subscripts(A) in lexicographic order.   

 

Given a minimal machine, for every state Si, we have f(Si)=St.  For a given  PFSM, we denote the 

number of all different maximal sets of pairwise-distinguishable states f(Si)'s as fuzziness degree  , as 

defined below.   

 

DEFINITION: Fuzziness degree   for a given  PFSM:  

Given a  PFSM,  we have     = |{f(Si) |  Si�St}|.   

 

According to the above definition, every state Si has only one maximal  set of pairwise-distinguishable 

states f(Si).  Therefore, it is easy to see that 1|St|, and =1 for any minimal PFSM.  

 

DEFINITION :  Prime machine: 

For a given PFSM S (St, Li, Lo, hS, S0), the prime machine  of S is a reduced (not necessarily 

minimal) PFSM M (StM, Li, Lo, hM, M0)  such that  S≠M.   

 

We give in the following the test generation algorithm. This algorithm requires that the user previously  

estimates an  upper bound  on the number of states in the prime machine of the given FSM 

implementation, that is, the number of states in its minimal form. 
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ALGORITHM 1:  Test generation. 

Input : A specification S in the form of a (arbitrary) PFSM (St, Li, Lo, h, S0), and  the upper bound m 

on the number of states in the prime machine of the given FSM implementation. 

Output :  a test suite �

Step 1:  Determine the  fuzziness degree  of S. 

Step 2: Let the number of states in S  be n (nm). Construct a characterization set W, and a tuple of 

state identification sets {W0, W1, ..., Wn-1}. 

Step 3: Construct a minimal set  ⁄Li* such that: Si�St x�L* (xin� & S0=x=>Si). 

Step 4: Let  = .({} Li)  )  and   = \

Step 5:  Assume: (i)  for V⁄Li*, V@W= 


S0=x=>Si
& xinV {xin}.(WTrin(Si)). 

                              (ii)  for V⁄Li*, V8{W0, W1, ..., Wn-1}= 


S0=x=>Si
& xinV {xin}.Wi 

                Construct  a  test suite �  in the following manner: 

� = �1�2   

                             where �1 = .({} Li  Li2  Lim-n@W,  and 

                                        �2 = . Lim-n8{W0, W1, ..., Wn-1}.       

 

In the above algorithm, the given specification is not required to be reduced.  However, a much smaller 

test suite will be obtained if we use its reduced form.   

 

For example, assuming that the implementation is a minimal FSM and will not have more than 3 

states,  we generate a test suite for the PFSM of Figure 2 as follows: 

     W = {a, b},   W0={a},    W1={a, b}, W2={ b} 

 = {, a,  a.b,    ={, a, b, c,  a.a,  a.b, a.c,  a.b.a,  a.b.b, a.b.c

  = { b, c,  a.a,  a.c,  a.b.a,  a.b.b, a.b.c

 = 1, 

�= {, a,  a.b@{a, b}={a, b, a.a, a.b, a.b.a, a.b.b}   
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     �= 8{W0, W1, W2}  

          ={b}.W1 {a.a}.W0{a.c}.W1 {a.b.a}.W2 {a.b.b}.W0 {a.b.c.W1                 

          = {b.a, b.b,  a.a.a, a.c.a, a.c.b, a.b.a.b, a.b.b.a, a.b.c.a, a.b.c.b 

     �= �1�2 = {a, b, a.a, a.b, a.b.a, a.b.b, b.a, b.b,  a.a.a, a.c.a, a.c.b, a.b.a.b, 

                                   a.b.b.a, a.b.c.a, a.b.c.b



Furthermore, a test suite could be reduced by deleting each test case that is a prefix of another test 

case. The final test suite is { b.a, b.b,  a.a.a, a.c.a, a.c.b, a.b.a.b, a.b.b.a, a.b.c.a, a.b.c.bA reset input 

must be sent before a test case is applied. 



THEOREM 2: (Validity of the test generation method): 

Consider a given specification S in the form of a PFSM,  and any FSM I.  Suppose nm where n is 

the number of states in S, and m is the upper bound of number of states in the prime machine of I.  Let  

� be  the test suite generated for S using Algorithm 1.  We have         SquasiI      iff     S=�I. 

Proof :  The theorem  follows from Lemmas given in Appendix.  

 

As shown in Algorithm 1, test suites for minimal partial machines can be constructed in the same way 

as for completely specified minimal machines since  is equal to one for minimal machines. However, 

if a partial machine has indistinguishable states, then the machine cannot be transformed into its 

minimal form to generate test suite with respect to the quasi-equivalence relation.  The reason is that 

the transformation of a partial machine into a minimal form by  merging states will result in the 

appearance of new traces that are not defined in the original machine.  In turn, this results in that some 

valid implementations may not pass a test suite derived from the minimal form, and that some test 

cases in such a test suite may be not acceptable in the original machine.   Therefore, partial machines 

should not be transformed into a minimal form for test generation. 

 



                                                                                                            22/09/2012                       Page  16 

3.2. Test generation for  OPNFSMs with respect to determinization relation 

 

We present in this section an adaptive testing procedure to generate test suites from OPNFSMs for 

testing the determinization relation. 

 

ADAPTIVE TESTING PROCEDURE:  

Input : An OPNFSM specification S and an FSM implementation I (the internal structure of 

implementation is not available). 

Output :  Report "(SdetI)" or "not(SdetI)". 

Step 1:  Let an OPNFSM variable SS be S initially. If the SS is not a deterministic PFSM, then go to 

Step 2.  Otherwise, go to Step 7. 

Step 2:  For the SS,  find  x�L* and  a nondeterministic state Si such that  

      S0=x=>Si  and y�pref({x}) ( y�x & S0=y=>Sj  ==>  Sj is deterministic. ) 

Step 3:  Find  a�Lin such that the multiplicity of the set {u | uin=a & Si=u=> } is over one.  

Step 4:  Apply the test sequence r.xin.a to the implementation (r is the reset input).  If the output 

sequence observed after applying r.xin is not the one produced by  applying the test sequence to the 

specification,  then report "not(SdetI)" (i.e., the implementation fails to pass the testing), and stop.  

Otherwise, assume the last output in the resulting output sequence is d,  and do Step 5.   

Step 5:  If not(Si=a/d=>), then report "not(SdetI)", and stop.  Otherwise,  do Step 6. 

Step 6: Construct a new OPNFSM SS from the original by deleting all transitions from Si with  the 

input a  except for the transition with the label a/d.  If the resulting SS is not a deterministic PFSM, 

then go to Step 2.  Otherwise, go to Step 7. 

Step 7: Generate a test suite from SS using Algorithm 1, then apply the resulting test suite �to the 

implementation.  If SS�I, then report "(SdetI)"; otherwise, report "not(SdetI)".  Stop.    

 

We say the above procedure to be adaptive because the test selection depends on the result of 

application of the formerly selected test cases.  We use an example to explain the testing procedure.  

Assume that the specification is the  OPNFSM shown in Figure 1, and that the implementation I 
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satisfies S'quasiI where S' is the PFSM shown in Figure 2.   First, we find  a nondeterministic state S0 

in Step 2 with x=. By Steps 3 and 4, we derive a test sequence r.a .  The last output in the resulting 

output sequence must be e; then construct a new machine SS by deleting the transition from S0 to S2 

with the label a/f.  After repeating the above steps once again, we delete the transition from S2 to S2 

with the label b/f.   At this point, the resulting SS is the PFSM shown in Figure 2.  According to Step 

7, we generate a test suite from the SS, as shown in Section 3.1. 

 

4. COMPARISON WITH OTHER RELATED WORK 

 

Since FSMs and PFSMs are specific classes of OPNFSMs, our methods can be applied to them,  to test 

the equivalence and quasi-equivalence relations, respectively (see Theorem 1).  We compare in this 

section our method for OPNFSMs with the other test generation methods for different machines 

[Fuji91, Vuon89, Sabn85, Nait81, Chow78, Vasi73, Petr91, Petr92, Evtu89], which also require a 

"reliable" reset in the implementations (note, that simple experiments or checking sequences do not use 

this assumption), as shown in Figure 3.  When applied to such classes of machines, this method yields 

usually smaller test suites with full fault coverage for each class of machines than the existing methods 

for the same class which also assure full fault coverage.   

 

Vuon89(UIOv), Fuji91(Wp), 
Vasi73, Chow78(W), Petr92(FF)

Petr91, Evtu89
our methods

PFSMsFSMs

OPNFSMs

Sabn85(UIO)

 methods without  full fault coverage 

 methods with full fault coverage

Nait81(TT-method)

Figure 3.  General comparison based on applicability and fault coverage  
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When our method is applied to FSMs, the conformance relation to be tested is the equivalence, the 

same as in the W-method [Vasi73, Chow78], the Wp-method [Fuji91], the UIO-method [Sabn85], the 

UIOv-method [Vuon89], the FF-method [Petr92] and the TT-method (Transition tour) [Nait81]. The 

UIO-method does not guarantee full fault coverage, as it has been pointed out in [Vuon89]; neither 

does the TT-method.  These methods have been justified by simulation on the basis of percentage of 

fault coverage. UIOv- and FF- methods guarantee full fault coverage (i.e., check equivalence) only if 

no malfunction causes an increase in the number of states.  The W- and Wp-methods detect all faults 

that may even increase the state number up to the given bound, and the latter produces, in general, 

smaller test  suite than the former [Fuji91].  

 

The method given in Section 3.1 may be considered a generalization of the Wp-method [Fuji91], and 

is, in particular, applicable to deterministic FSMs, which are a specific class of PFSMs.  We note that 

even for FSMs, our method is slightly different from the Wp-method.  We do not require Wi⁄W as in 

the Wp-method, instead, we only require Wi⁄pref(W).  Since Wi⁄W implies Wi⁄pref(W) but not vice 

versa, our method may produce shorter test cases than W- and Wp-methods. 

  

Test generation for partial FSMs has received much less attention than that for completely-specified 

FSMs.  However, practical communication software are often modeled as partial machines. Some 

authors proposed to complete the "don't care" state/input combinations of partial machines in 

accordance with a so-called completeness assumption [Sabn85, Vuon89].  The assumption states that a 

machine should be  constructed in such a way that, for every state/input combination representing 

"don't care", it produces a null   or error output and either remains in the same state or goes into an 

error state.  However, in many cases, implementations are not constructed in the above way.  In this 

case, the completeness assumption cannot be satisfied.  Methods for test suite generation from a 

deterministic partial FSM were reported in [Evtu89, Petr91]. We note that  neither the method given in 

Section 3.1 nor method given in [Petr91] necessarily produces smaller test suites than the other.  

However, our methods combine the ideas given in [Evtu89]  and  [Fuji90],  can generate usually 
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smaller test suites than the method given in [Evtu89], and are applicable to testing deterministic 

machine implementations against their nondeterministic specifications.    

 

5. CONCLUSION 

 

We first present in this paper a method of generating test cases from partially-specified finite state 

machines specifications. If a given PFSM is not minimal  and its fuzziness degree is more than one, 

then the lengths of test cases produced by our method grow rapidly when  increases. Let  n and m be 

the numbers of states in a specification and its implementation, respectively.  In the extreme case, 

when n, the length of a test case can reach n6m, as shown in [Evtu89].  As to the multiplicity  of 

test suites produced by the method given in Section 3.1, the order is O(n3|Li|m-n+1).  We then give a 

method of generating test suites to check OPNFSM deterministic implementations against their 

nondeterministic specifications.  Our methods can be applied to test generation for the control portion 

of the software written in SDL [Beli89] or ESTELLE. 

 

APPENDIX :   VALIDITY OF TEST METHOD 

 

For the convenience of presentation, we make several conventions and definitions; then we give 

several lemmas which are required for proving the Theorem 2. 

 

Given  a  PFSM S (StS, Li, Lo, hS, S0) and an FSM I  (StI, Li, Lo, hI, I0),  we assume in the following:  

(1) All states of  S and I are reachable from the initial states S0 and I0, respectively. 

(2)  S has n states with n ≥ 2.  

(3)  M  (StM, Li, Lo, hM, M0)  is the prime machine of I, and may have at most m states with m≥n. 

(4)  Si, Sj, Sk, Sl, and Mi, Mj, Mk, Ml represent the states of S and M, respectively. 

(5)  A characterization set is W.  A tuple of state identification sets is {W0, W1, ..., Wn-1}. 

(6) the  fuzziness degree of S is . 

(7)  a set  ⁄Li* constructed from S such that: Si�St x�L* (xin� & S0=x=>Si). 
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(8)   = .({} Li)  )  and   = \ . 

(9)  A  test suite �  which is constructed using Algorithm 1: 

                                         � = �1�2   

                             where �1 = .({} Li  Li2  Lim-n@W,  and 

                                        �2 = . Lim-n8{W0, W1, ..., Wn-1}.       

 

 
Definitions of several notations 

    notation                                    meaning 
 
 [Si,Mi] -u-> [Sj,Mj]            For  u�L,  Si-u->Sj     and   Mi-u->Mj 
 [Si,Mi] =x=> [Sj,Mj]          For  x�L*,  Si=x=>Sj     and   Mi=x=>Mj 
 [Si,Mi]-after-V                    Given a pair of states [Si,Mi]�StS StM,  and a set V⁄Li*  

                                            [Si,Mi]-after-V={[Sj,Mj] | x�L* ( xin�V & 

                                                                                                         [Si,Mi] =x=> [Sj,Mj])} 
                                           =[S0, M0]-after-L* 

 r                                         r = {[Si,Mj] | [Si,Mj]�  &  Si=WMj} 
 i                               i = {[Sk,Mk]| [Sk,Mk]� r & Sk�f(Si)}      
 Lik                                        Lik = {} Li Lik, when k1;  and Li0 = {}. 

  

It is easy to see r⁄  and  | r|| |n6m.  

 

LEMMA 1:  For  V⁄Li*, assume  |[S0,M0]-after-V | k . 

If  | |>k,  then  |[S0,M0]-after-V.({} Li)| k+1;  and if | |k, then 

               [S0,M0]-after-V.({} Li) =  [S0,M0]-after-V. 

Proof: 

(I)  To prove that the lemma holds when  | |>k. 

The lemma holds when |[S0,M0]-after-V|k .  Now consider the case that  |[S0,M0]-after-V|k. 

                  statements                                                              reasons 

(1)   |  | > k                                                                                                  hypothesis 

(2)         |[S0,M0]-after-V | k                                                                        hypothesis 

(3)         [S0,M0]-after-V⁄                                                                     definition of  
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(4)         [Si,Mi]� \[S0,M0]-after-V                                                           (1) & (2) & (3) 

(5)         [Sk-1,Mk-1]�[S0,M0]-after-V 

              [Sk,Mk],[Si,Mi]� \[S0,M0]-after-V 

              u�L x,y�L* such that: xin�V & 

             ([S0,M0]=x=>[Sk-1,Mk-1]-u->[Sk,Mk]=y=>[Si,Mi]                        (4) 

(6)         [Sk,Mk]�[S0,M0]-after-V.({} Li))\[S0,M0]-after-V               (5) 

(7)          |[S0,M0]-after-V.({} Li)| k+1                                                  (6) 

(II) To prove that the lemma holds when  | |k. 

(1)   |  |  k                                                                                                  hypothesis 

(2)         |[S0,M0]-after-V | k                                                                        hypothesis 

(3)         [S0,M0]-after-V⁄                                                                     definition of  

(4)        [S0,M0]-after-V.({} Li) =  [S0,M0]-after-V                                (1) & (2) &(3).  

 

LEMMA 2: Assume S0= M0.  If  | |6m, then |[S0,M0]-after- .Lim-n| 6m; 

                                   and if | |6m, then  [S0,M0]-after- .Lim-n =  . 

Proof: 

Since m≥n, Lim-n is always defined. 

(I)  To prove that the lemma holds when | |>6m. 

(1)    S0 M0                                                                                                 hypothesis 

(2)          | |>6m                                                                                         hypothesis 

(3)          |[S0,M0]-after- | n                                                             S is initially-connected & (1) 

(4)          |[S0,M0]-after- .Lim-n| 6m                       (2) & (3) & apply  Lemma 1 6m-n times 

(II) It is evident from Lemma 1 that the lemma also holds when  | |6m.  

 

LEMMA 3: For Si�StS, | i| m 

Proof: 

(1)  |StM| =m                                                                                                         hypothesis 

(2)           | i| >m                                                                                                  assumption 
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(3)           [Sj,Mk],[Sl,Mk]� i ( j�l & SjWMk & SlWMk )                           (1) & (2)  

(4)          SjWSl                                                                                (3) & M is completely specified 

(5)           (4) is not true                                                                     "definition of W"  & "SjSl�f(Si)"    

(6)    | i| m                                               (2) causes the contradiction between (4) and (5).  

 

LEMMA 4:  | r| 6m. 

Proof: 

Let  E = {f(Si) | Si�StS}. 

(1)  =|E|                                                                                                  definition of 

(2)        r⁄ 


f(Si)E i                                                         definition of r 

(3)        f(Si)�E (| i|m )                                                      Lemma 3 

(4)       | r| 


f(Si)E  | i|                                                           (2)
 

(5)       | r| 6m                                                                                   (1) & (3) & (4).  

 

LEMMA 5: If S0=�1M0,  then    [S0,M0]-after- .Lim-n = r. 

Proof:  

When | | 6m, the lemma is evident from Lemma 2.   Now consider the case that | | 6m. 

(1)  S0=�1M0                                                                                                hypothesis 

(2)            | | 6m                                                                                    hypothesis 

(3)            | [S0,M0]-after- .Lim-n | 6m                                                  (2) & Lemma 2 

(4)            [S0,M0]-after- .Lim-n⁄ r                                                       (1) 

(5)            | [S0,M0]-after- .Lim-n | | r| 6m                                     (4) & Lemma 4 

(6)           | [S0,M0]-after- .Lim-n | | r| 6m                                      (3) & (5) 

(7)            [S0,M0]-after- .Lim-n  r                                                       (4) & (6).                           

 

 

LEMMA 6:  If S0=�1M0,  then [Si,Mk]�  ([Sj,Mk]� r). 
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Proof:  

Let  E = {f(Si) | Si�StS}, thus  =|E|. 

(1)  S0=�1M0                                                                                                  hypothesis 

(2)  S0= M0                                                                                                    (1) 

(3)  if | || [S0,M0]-after-V|, 

       then  |[S0,M0]-after-V.({} Li)| |[S0,M0]-after-V|+1      the same reason as for Lemma 1 

(4)  |[S0,M0]-after- | n                                                              "S is initially-connected" & (2) 

(5)           not( [Si,Mk]�  ([Sj,Mk]� r)  )                             assumption 

(6)           [S0,M0]-after- .Lim-n⁄ r⁄   &  r�                   (1) & (5) 

(7)           | [S0,M0]-after- .Lim-n | 6m                                   (4) & (6) & "apply  (3) m-n times" 

(8)           | r|6m                                                                      (6) & (7) 

(9)            Ml�StM [Si,Mj]� r (l�j)                                        (5) 

                consider such a Ml                                                         make a convention 

(10)         r⁄ 


f(Si)E i                                               definition of r 

(11)        f(Si)�E (| i|m-1 )                                                    (9) & the similar reason for Lemma 3 

(12)       | r| 


f(Si)E  | i|                                                            (10)
 

(13)       | r| 6(m-1)                                                                 (11) & (12) & =|E|. 

(14)       [Si,Mk]�  ([Sj,Mk]� r)        (5) causes the contradiction between (8) and (13).     

 

LEMMA 7:  If S0=�1M0,  then [Si,Mk]�  ([Si=WiMk]<==> [Si=WMk]. 

Proof:  

(1)  S0=�1M0                                                                                                         hypothesis 

(2)          [Si,Mk]�   & Si=WiMk                                                       assumption 

(3)          Sj=WMk                                                                                (2) & (1) & Lemma 6 

(4)          Si=WiSj                                                                                (2) & (3) & Wi⁄pref(W) 

(5)           i=j                                                                                          (4) & definition of Wi 

[Si,Mk]�  ([Si=WiMk]==> [Si=WMk]                                 (2) ==> (3) & (5) 
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[Si,Mk]�  ([Si=WiMk]<== [Si=WMk]                                 definition of Wi 

(8)  [Si,Mk]�  ([Si=WiMk]<==> [Si=WMk]   

 

LEMMA 8:  If S0=�M0,  then   [S0,M0]-after- .Lim-n = r = . 

Proof:  

(1)  S0=�M0                                                                                                                 hypothesis 

(2)  S0=�M0                                                                                                               (1) 

(3)  S0=�M0                                                                                                               (1) 

(4)   S0= M0                                                                                                                (1) 

(5)  [S0,M0]-after- .Lim-n⁄ r                                                    (3)  & (2) & Lemma 7 

(6)  [S0,M0]-after- .Lim-n+1⁄ r                                                (5) & (2) &   = .({}Li) 

(7)          | |m                                                                              assumption 

(8)          |[S0,M0]-after- .Lim-n+1|m+1                                    (7) & (4) & Lemma 2 & Lemma 1 

(9)          (7) is not true                                                                     (6) & Lemma 3  

(10)   | |m                                                            (7) causes the contradiction between (7) and (9) 

(11) [S0,M0]-after- .Lim-n+1=                                                (10) & (4) & Lemma 2 

(12) [S0,M0]-after- .Lim-n+1  r =                                     (6) & (11) &  r⁄

(13) [S0,M0]-after- .Lim-n  r =                                         (12) & Lemma 5.    

 

 

LEMMA 9:  If  S0=�M0, then S0quasiM0. 

Proof: 

Note that [S0,M0]-after- .Lim-n+1 =[S0,M0]-after- .Lim-n.  

(1)   S0=�M0                                                                                                  hypothesis 

(2)   x�L*(   if xin� .Lim-n and [S0,M0]=x=>[Sj,Mj], 

                         then   (i)  [Sj,Mj] is unique, and     

                                   (ii) a�Li (Sj={a}Mj)   )                                              (1) & Lemma 8 

(3)              not (S0quasiM0 )                                                                          assumption 
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(4)              y�L* u�L [Si,Mi]� r  such that yin� .Lim-n & 

                   [S0,M0]=y=>[Si,Mi] & Si-u-> & Mi\-u->                              (3) & (1) & Lemma 8 & 

(5)   S0quasiM0                                                  (3) causes the contradiction between (2) and (4).      

 

LEMMA 10:  S0=�M0      iff      S0=�I0 .   

Proof: Since I0=�M0, S0=�M0 implies S0=�I0.  By the same reason,S0=�I0 implies S0=�M0.  
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