
 22/09/2012 Page 1

GENERATING TESTS FOR COMMUNICATION SOFTWARE

MODELED BY PARTIALLY-SPECIFIED FINITE STATE MACHINES1

Gang Luo, Alexandre Petrenko2 and Gregor v. Bochmann

Departement d'IRO, Universite de Montreal,
C.P. 6128, Succ.A, Montreal, P.Q., H3C 3J7, Canada

E-mail:{luo, petrenko, bochmann}@iro.umontreal.ca Fax: (514) 343-5834

ABSTRACT In order to test the control portion of communication software, specifications are usually

first abstracted to state machines, then test cases are generated from the resulting machines. In

practical applications, the state machines obtained from the specifications are often partially-specified,

and sometimes nondeterministic. We come out with two methods for test generation. The first

generates test suites for the software that is modeled by partially-specified finite state machines

(PFSMs) with respect to a conformance relation, called quasi-equivalence. The method is a

generalized version of the Wp-method and applicable also to completely-specified deterministic

machines which are specific class of PFSMs. This method yields usually smaller test suites with full

fault coverage for each class of machines than the existing methods for the same class which also

assure full fault coverage. The second method generates test suites to test deterministic

implementations against their partially-specified nondeterministic finite state machine (PNFSM)

specifications, with respect to a conformance relation, which we call determinization relation.

KEYWORDS: Error detection, finite state machines, partially-specified nondeterministic finite state

machines, protocol conformance testing, and software testing.

1 This work was supported by the IDACOM-NSERC-CWARC Industrial Research Chair on Communication Protocols at

the University of Montreal (Canada)
2 On leave from the Institute of Electronics and Computer Science, Riga, Latvia.

 22/09/2012 Page 2

1. INTRODUCTION

In the area of communication software, systematic approaches have been developed for protocol

conformance testing [Rayn87, Boch89], and the selection of appropriate test suites [Fuji91, Pitt90,

Sidh89, Sari87, Chow78]. These approaches can produce significant economic benefits [Aho90,

AT&T90]. Usually, the specifications of communication software are first abstracted to state

machines, then test cases are generated from the resulting machines [Lee91, Roug89]. A considerable

amount of work has been done to generate test cases for completely-specified, deterministic finite state

machines (FSMs) [Fuji91, Sidh89, Sari84, Chow78, Gone70, Vuon89, Sabn85, Nait81, Vasi73].

However, the specifications of communication software are often partially (or incompletely)

specified, and may be nondeterministic. For example, communication protocols are often partially

specified [Sari84]. A major specification language for communication software, ESTELLE [Budk87,

ISO9074] supports the description of partially-specified behavior. Furthermore, in practical

applications, specifications may be nondeterministic but their implementations are deterministic. In

nondeterministic state machine specifications, for a given state, several transitions may be associated

with the same input, and they represent several choices which valid implementations can have. During

implementation process, only one of the choices (transitions) is required to be implemented. Such an

implementation process is also called determinization process. Some work has been reported on test

generation for partially-specified deterministic machines [Petr91, Evtu89]; however, no test generation

method has been reported for checking nondeterministic specifications against their implementations.

We study in this paper test generation for the finite state machines that could be both partially-

specified and nondeterministic, guided by pre-defined conformance relations.

In the area of protocol conformance testing, the meaning of conformance between a specification and

the valid implementations is specified either by informal description, or by precisely-defined

conformance relations. Usually, the formally-defined conformance relations are preferable since they

provide a means to direct the development of test generation methods and a basis to analyze the

 22/09/2012 Page 3

validity of the methods. For completely-specified deterministic finite state machines (FSMs), partially-

specified deterministic finite state machines (PFSMs), there are commonly-defined conformance

relations in the literature [Fuji91, Chow78, Vasi73, Star72, Gill62]. However, no conformance

relation has been reported for partially-specified nondeterministic finite state machines (PNFSMs),

except for some general study on the specialization of object behaviors and requirement specifications

[Boch92].

In Section 2, after formally defining PNFSMs and several related notations, we first describe a

conformance relation, called quasi-equivalence, for PFSMs [Gill62]. We then introduce a

conformance relation between PNFSM specifications and their PFSM implementations, called

determinization relation. The relation is defined in terms of input/output traces in accordance with

black-box testing strategy. When the relation is applied to FSM and PFSM specifications, which are

specific cases of PNFSMs, it coincides to the corresponding conformance relations given in the

literature. We also define several concepts which are related to test generation.

Guided by the conformance relations, in Section 3, we come out with two test generation methods.

The first method is to generate test suites from PFSMs (partially-specified deterministic finite state

machines); and the resulting test suites can be used to test PFSM implementations against their

specifications with respect to the quasi-equivalence relation. The method is a generalized version of

the Wp-method [Fuji91], obtained by combining the ideas given in [Fuji91] and [Evtu89]. The second

one is to adaptively generate test suites from so-called observable PNFSMs for testing the

determinization relation. The OPNFSMs have the property that a state and an input/output pair

uniquely determine the next state, while a state and an input alone do not necessarily determine a

unique next state and an output. The OPNFSMs are a specific class of PNFSMs that have a lower

degree of nondeterminism.

In Section 4, we compare our methods with other test generation methods, on the basis of applicability,

fault coverage and the size of test suites. This method yields usually smaller test suites with full fault

 22/09/2012 Page 4

coverage for each class of machines than the existing methods for the same class which also assure full

fault coverage.

We conclude in Section 5 by discussing some extreme case of the length of test cases and the upper

bound of the size of test suites, for partial machines.

2. NOTATIONS AND ABSTRACT TESTING FRAMEWORK

We first give in this section the definition of PNFSMs, then present conformance relations between

specifications and implementations under the black-box testing strategy (where implementations are

assumed to be black-boxes), and finally define several concepts which are related to testing.

2.1 Partially-specified nondeterministic finite state machines (PNFSMs)

We first define PNFSMs in a traditional form similar to that given in [Star72] for NFSMs. For the

convenience of presentation, we then define additional notations for PNFSMs similar to that for

labeled transition systems [Brin88, Fuji91b, Fuji91c].

DEFINITION Partially-specified Nondeterministic Finite State Machine :

A Partially-specified Nondeterministic Finite State Machine (PNFSM) is defined as a 5-tuple (St, Li,

Lo, h, S0) where:

(1) St is a finite set of states, St={S0, S1, ..., Sn-1}.

(2) Li is a finite set of inputs.

(3) Lo is a finite set of outputs.

(4) h is a behavior function:

 h : d => powerset(St Lo) \{�} where

 (i) d⁄St 6 Li (PNFSM becomes completely specified if d=St 6 Li);

 (ii) � denotes the empty set.

 22/09/2012 Page 5

Let P, Q�St, a�Li and b�Lo. We write P-a/b->Q to denote (Q, b)�h(P,a); P-a/b->Q is called a

transition from P to Q with label a /b.

(5) S0 is the initial state, which is in St.

We assume that a "reliable" reset input r is available in any implementation of a PNFSM such that

upon receiving r in any state the implementation returns to the initial state.

We often use in the following the term "partial machine" to refer to a PNFSM, which may be

deterministic or not. A partial machine can be represented by a directed graph in which the nodes are

the states and the directed edges are transitions linking the states. Figure 1 shows an example of such

a machine.

Figure 1. An example of a PNFSM

a/e

b/e

Li = { a, b, c}

Lo = { e, f}

b/f

S0 S1

S2

a/f

a/f, b/f

c/f

c/e b/f

a/f

For the convenience of the presentation, we also introduce in Table 1 several notations.

 Table 1. Notation for PNFSMs

 notation meaning
 L Li 6 Lo, a set of input/output pairs; u denotes such a pair
 is the empty sequence.
 L* set of sequences over L; x denotes such a sequence.
 Note that �L*
 P\-u-> For P, Q �St, not(Q(P-u->Q))
 P==>Q P=Q
 P=a/b=>Q P-a/b->Q
 P=x=>Q P1, ..., Pk-1�St (P=P0=u1=>P1...=uk=>Pk=Q)
 where u1,...,uk�L, and x=u1...uk

 P=x=> Q�St (P=x=>Q)
 Tr(P) Tr(P)={ x | P=x=>}
 xin For x�L*, xin is an input sequence obtained by deleting all outputs in x
 (note that xin�Li*)
 Vin For V⁄L*, Vin={xin | x�V }

 22/09/2012 Page 6

 Trin(P) Trin(P)={ xin | P=x=> },
 (note that Trin(P)=Li* for each state P of completely-specified NFSMs)

DEFINITION Initially connected PNFSM:

Given a PNFSM S (St, Li, Lo, h, S0), S is said to be initially connected iff

Si�St x�L* (S0=x=>Si).

In initially connected PNFSMs, every state is reachable from the initial state. Without loss of

generality, we assume that all machines considered in the rest of the paper are initially connected. If

a given machine S is not initially connected, we may consider only such a submachine which is a

portion of S consisting of all states and transitions that are reachable from the initial state of S. The

unreachable states and transitions of machines do not affect the behavior.

We first define so-called observable PNFSMs, a concept originally described in [Star72] for

completely specified machines, which represents a restricted form of nondeterminism.

DEFINITION Observable PNFSMs (OPNFSMs) :

A PNFSM is said to be observable if for every state S �St, and every input/output pair a/b �L, there is

at most one transition; that is, S-a/b->S1 & S-a/b->S2 ==> S1=S2.

As an example, Figure 1 shows an OPNFSM. OPNFSMs are a subclass of partial machines. In

observable machines, a state and an input/output pair can uniquely determine at most one next state.

However, an OPNFSM may still be nondeterministic in the sense that a state and an input cannot

determine a unique next state and a unique output. We note that all deterministic machines are

observable.

Given a state P in a PNFSM, we say that P is deterministic if no two outgoing transitions from P

have the same input; and we say that P is nondeterministic if P is not deterministic. For a PNFSM,

if every state is deterministic, then the machine is deterministic; and we call it a partial FSM

 22/09/2012 Page 7

(PFSM). We now define in the following several specific classes of PFSMs, which are useful

concepts for test generation.

DEFINITION: Reduced PFSMs :

An PFSM is reduced iff Si, Sj�St (i�j ==> Tr (Si)�Tr (Sj)).

A PFSM is reduced if and only if none of its states accept the same set of input/output sequences.

DEFINITION: Distinguishable states:

Given a pair of states Si and Sj, Si and Sj are distinguishable, written Si— Sj, iff

 x�Tr(Si)&Tr(Sj) (xin�Trin(Si)Trin(Sj))

where Tr(Si)&Tr(Sj)=(Tr(Si)Tr(Sj)) \(Tr(Si)Tr(Sj)).

If a pair of states are not distinguishable, we say that they are indistinguishable.

Two states are distinguishable if and only if there is an input/output sequence x such that x can be

accepted by only one of the two states but the input sequence xin can be accepted by the both of them.

DEFINITION: Minimal PFSMs:

A PFSM is minimal iff Si, Sj�St (i�j ==> Si—Sj).

A PFSM is minimal if and only if every pair of states are distinguishable.

A minimal PFSM is reduced, but a reduced PFSM is not necessarily minimal. Given a minimal

machine S, each state of P is distinguishable from all other states of P, which is not necessarily true for

a reduced machine. If we consider a completely specified machine, then a reduced machine is also

minimal.

We also need the following concepts for presenting our method.

 22/09/2012 Page 8

DEFINITION: prefix set pref(V) for a given set of sequences:

Given a set of sequences V�Li* ,

 pref(V)={t1 | t2�Li* & t1.t2�V} where t1.t2 is the concatenation of t1 with t2.

DEFINITION: Concatenation of sets of i/o sequences or input sequences:

Assuming V1, V2 ⁄L* (or V1, V2 ⁄Li*), the concatenation of sets, written ".", is defined as follows:

 V1.V2 = { t1.t2 | t1�V1 & t2 �V2} where t1.t2 is the concatenation of t1 with t2.

 We write Vn = V.Vn-1 for n > 1 and V1 = V.

2.2. Conformance relations

Before any study on how to generate test suites, the following question must first be answered: under

the black-box testing strategy, what kind of conformance relation between a specification and the

corresponding implementation is expected to hold ?

For (completely-specified, deterministic) FSMs, there is a widely-accepted conformance relation,

called equivalence, (see, e.g., [Fuji91, Chow78, Vasi73, Star72, Gill62]), which requires that a

specification and its implementation produce the same output sequence for every input sequence. We

define in this section conformance relations for machines in terms of the relations between their initial

states.

DEFINITION Equivalence:

The equivalence relation between two states P and Q in PFSMs, written

 P≠Q, holds iff Tr(P) =Tr(Q)

Given two PFSMs S and I with their initial states S0 and I0, we write S≠I iff S0≠I0.

 22/09/2012 Page 9

A reduced machine has no equivalent states. For PFSMs, a conformance relation, called quasi-

equivalence, was presented in [Gill62, Star72, Evtu89]. The relation requires that, for every input

sequence that can be accepted by a specification, the specification and its implementation produce the

same output sequence.

DEFINITION Quasi-equivalence:

The quasi-equivalence relation between two states P and Q in PFSMs, written

 Pquasi Q, holds iff Tr(P)⁄Tr(Q)

Given two PFSMs S and I with their initial states S0 and I0, we write SquasiI iff S0quasiI0.

The quasi-equivalence relation is not an equivalent relation since it is not symmetric.

However, it is quite often in practical applications that specifications are nondeterministic and their

implementations are deterministic. For a state P and a set of transitions starting from P, we say that in

state P, an input a associates the set of transitions if the input symbol of every transition in the set is

a. In nondeterministic state machine specifications, for a given state, several transitions may be

associated with the same input, and they represent several choices which valid implementations can

have. During implementation process, only one of the choices is required to be implemented. Such

an implementation process is also called determinization process. We now formalize the conformance

relation between PNFSM specifications and their PFSM implementations, which we call

determinization relation.

DEFINITION Choice:

The choice relation between a PNFSM S and a PFSM S', written

 SchoS', holds iff S' can be obtained from S in the following fashion:

For every P�St and every a �Li, if the input a associates more than one transitions from the state P,

keep one of them and eliminate the rest of transitions. We say that S' is chosen from S.

 22/09/2012 Page 10

Figure 2. A PFSM chosen
 from the PNFSM of Figure 1

a/e

b/e

b/f

S0 S1

S2 a/f

c/f

c/e b/f

a/f

DEFINITION Determinization

The determinization relation between a PNFSM S and a PFSM I, written SdetI, holds iff

S'(SchoS' & S'quasiI).

We present in the following the relations among the above-defined conformance relations .

THEOREM 1: Given two PNFSMs S and I, assuming that they have common Li and Lo, we have

the following statements:

(i) S≠I <==> SquasiI & IquasiS

(ii) if S and I are (deterministic) PFSMs, then SdetI <==> SquasiI

(iii) if S and I are (completely-specified, deterministic) FSMs, then

 SquasiI <==> S≠I <==> SdetI .

The above theorem is evident from the corresponding definitions.

2.3. Definitions related to testing

We define in this section several concepts which are related to testing finite state machines.

DEFINITION Test case and test suite :

For a given PNFSM, a sequence t of a finite length is a test case if t�Trin(S0). A test suite is a finite

set of test cases.

 22/09/2012 Page 11

DEFINITION : Equivalence with respect to a given input set:

The equivalence relation between two states P and Q, with respect to a given input set �⁄Li*, written

P=�Q, holds iff ¢x�Tr(P)&Tr(Q) (x�Trin(P)Trin(Q) ==> xin��).

Given two PNFSMs S and I with their initial states S0 and I0, we write S=�I iff S0=�I0.

The equivalence relation with respect to a given input set �requires that, for every input sequence in

�that can be accepted by both a specification and its implementation, the specification and its

implementation produce the same output sequence.

We note: (i) S≠I iff �⁄Li*S =� I), and (ii) SquasiI iff �⁄Trin(S) S =� I).

3. TEST GENERATION

We present in this section two test generation methods. The first method is to generate test suites from

PFSMs (partially-specified deterministic finite state machines); and the resulting test suites can be

used to test PFSM implementations against their specifications with respect to the quasi-equivalence.

The second one is to adaptively generate test suites from PNFSMs (partially-specified

nondeterministic finite state machines) for testing the determinization relation.

3.1. Test generation for PFSMs with respect to quasi-equivalence

We first define several key concepts for presenting our method, then give an algorithm of generating

test suites, and finally present a theorem for establishing the validity of the algorithm.

DEFINITION: Characterization set W:

Given an PFSM, a characterization set is a minimal set W ⁄Li* such that:

Si, Sj�St (Si—Sj ==> x�Tr(Si)&Tr(Sj) (xin�Trin(Si)Trin(Sj)W)).

 22/09/2012 Page 12

The above definition is generalized from the concept of the characterization set for FSMs given in

[Chow78] to PFSMs. We omit the algorithm for generating characterization sets because of the length

limitation of the paper. One can develop such an algorithm by borrowing the ideas of generating

characterization sets for FSMs pointed out by [Koha70, Chow78].

DEFINITION: State identification sets {W0, W1, ..., Wn-1}:

Given a PFSM with n states and a characterization set W, {W0, W1, ..., Wn-1} is a tuple of state

identification sets if, for i=0, 1, ..., n-1, Wi is a minimal set such that

(i) Wi⁄Trin(Si)pref(W), and

(ii) for j=0, 1, ..., n-1, (Si—Sj, ==> x�Tr(Si)&Tr(Sj) (xin�Wi)).

The above definition is generalized from the concept for FSMs given in [Fuji91] to PFSMs.

DEFINITION: subscripts(A) for a given state set:

For A⁄St, subscripts(A) is a string of integers i1, i2, ..., ik,

 where i1 i2 ...ik and A={Si1 Si2, ..., Sik }.

Given two sets of states A and B, we say that the subscripts of A is smaller than that of B if

subscripts(A) precedes subscripts(B) in lexicographic order. The notation subscripts(A) for a given

set of states A is needed for defining a so-called maximal set of pairwise-distinguishable states f(Si)

for a given state Si for PFSMs. A set of states are pairwise-distinguishable if and only if every pair

of states in the set are distinguishable. A maximal set of pairwise-distinguishable states is a set such

that it is not contained by any other set of pairwise-distinguishable states. A maximal set of pairwise-

distinguishable states f(Si) for a given state Si is the set with the smallest subscript among the maximal

sets of pairwise-distinguishable states that contains Si, which is formally defined as follows.

 22/09/2012 Page 13

DEFINITION: Maximal set of pairwise-distinguishable states f(Si) for a given state Si:

Given a PFSM and a state Si�St, f(Si) is defined as a set A⁄St such that:

(i) Si�A, and

(ii) Sk, Sj�A (k�j ==> Sk—Sj), and

(iii) there is no B⁄St such that

 (i') Si�B, and

 (ii') Sk, Sj�B (k�j ==> Sk—Sj), and

 (iii') |B| > |A| or

|B|=|A|, and subscripts(B) precedes subscripts(A) in lexicographic order.

Given a minimal machine, for every state Si, we have f(Si)=St. For a given PFSM, we denote the

number of all different maximal sets of pairwise-distinguishable states f(Si)'s as fuzziness degree , as

defined below.

DEFINITION: Fuzziness degree for a given PFSM:

Given a PFSM, we have = |{f(Si) | Si�St}|.

According to the above definition, every state Si has only one maximal set of pairwise-distinguishable

states f(Si). Therefore, it is easy to see that 1|St|, and =1 for any minimal PFSM.

DEFINITION : Prime machine:

For a given PFSM S (St, Li, Lo, hS, S0), the prime machine of S is a reduced (not necessarily

minimal) PFSM M (StM, Li, Lo, hM, M0) such that S≠M.

We give in the following the test generation algorithm. This algorithm requires that the user previously

estimates an upper bound on the number of states in the prime machine of the given FSM

implementation, that is, the number of states in its minimal form.

 22/09/2012 Page 14

ALGORITHM 1: Test generation.

Input : A specification S in the form of a (arbitrary) PFSM (St, Li, Lo, h, S0), and the upper bound m

on the number of states in the prime machine of the given FSM implementation.

Output : a test suite �

Step 1: Determine the fuzziness degree of S.

Step 2: Let the number of states in S be n (nm). Construct a characterization set W, and a tuple of

state identification sets {W0, W1, ..., Wn-1}.

Step 3: Construct a minimal set ⁄Li* such that: Si�St x�L* (xin� & S0=x=>Si).

Step 4: Let = .({} Li)) and = \

Step 5: Assume: (i) for V⁄Li*, V@W=

S0=x=>Si
& xinV {xin}.(WTrin(Si)).

 (ii) for V⁄Li*, V8{W0, W1, ..., Wn-1}=

S0=x=>Si
& xinV {xin}.Wi

 Construct a test suite � in the following manner:

� = �1�2

 where �1 = .({} Li Li2 Lim-n@W, and

 �2 = . Lim-n8{W0, W1, ..., Wn-1}.

In the above algorithm, the given specification is not required to be reduced. However, a much smaller

test suite will be obtained if we use its reduced form.

For example, assuming that the implementation is a minimal FSM and will not have more than 3

states, we generate a test suite for the PFSM of Figure 2 as follows:

 W = {a, b}, W0={a}, W1={a, b}, W2={ b}

 = {, a, a.b, ={, a, b, c, a.a, a.b, a.c, a.b.a, a.b.b, a.b.c

 = { b, c, a.a, a.c, a.b.a, a.b.b, a.b.c

 = 1,

�= {, a, a.b@{a, b}={a, b, a.a, a.b, a.b.a, a.b.b}

 22/09/2012 Page 15

 �= 8{W0, W1, W2}

 ={b}.W1 {a.a}.W0{a.c}.W1 {a.b.a}.W2 {a.b.b}.W0 {a.b.c.W1

 = {b.a, b.b, a.a.a, a.c.a, a.c.b, a.b.a.b, a.b.b.a, a.b.c.a, a.b.c.b

 �= �1�2 = {a, b, a.a, a.b, a.b.a, a.b.b, b.a, b.b, a.a.a, a.c.a, a.c.b, a.b.a.b,

 a.b.b.a, a.b.c.a, a.b.c.b

Furthermore, a test suite could be reduced by deleting each test case that is a prefix of another test

case. The final test suite is { b.a, b.b, a.a.a, a.c.a, a.c.b, a.b.a.b, a.b.b.a, a.b.c.a, a.b.c.bA reset input

must be sent before a test case is applied.

THEOREM 2: (Validity of the test generation method):

Consider a given specification S in the form of a PFSM, and any FSM I. Suppose nm where n is

the number of states in S, and m is the upper bound of number of states in the prime machine of I. Let

� be the test suite generated for S using Algorithm 1. We have SquasiI iff S=�I.

Proof : The theorem follows from Lemmas given in Appendix.

As shown in Algorithm 1, test suites for minimal partial machines can be constructed in the same way

as for completely specified minimal machines since is equal to one for minimal machines. However,

if a partial machine has indistinguishable states, then the machine cannot be transformed into its

minimal form to generate test suite with respect to the quasi-equivalence relation. The reason is that

the transformation of a partial machine into a minimal form by merging states will result in the

appearance of new traces that are not defined in the original machine. In turn, this results in that some

valid implementations may not pass a test suite derived from the minimal form, and that some test

cases in such a test suite may be not acceptable in the original machine. Therefore, partial machines

should not be transformed into a minimal form for test generation.

 22/09/2012 Page 16

3.2. Test generation for OPNFSMs with respect to determinization relation

We present in this section an adaptive testing procedure to generate test suites from OPNFSMs for

testing the determinization relation.

ADAPTIVE TESTING PROCEDURE:

Input : An OPNFSM specification S and an FSM implementation I (the internal structure of

implementation is not available).

Output : Report "(SdetI)" or "not(SdetI)".

Step 1: Let an OPNFSM variable SS be S initially. If the SS is not a deterministic PFSM, then go to

Step 2. Otherwise, go to Step 7.

Step 2: For the SS, find x�L* and a nondeterministic state Si such that

 S0=x=>Si and y�pref({x}) (y�x & S0=y=>Sj ==> Sj is deterministic.)

Step 3: Find a�Lin such that the multiplicity of the set {u | uin=a & Si=u=> } is over one.

Step 4: Apply the test sequence r.xin.a to the implementation (r is the reset input). If the output

sequence observed after applying r.xin is not the one produced by applying the test sequence to the

specification, then report "not(SdetI)" (i.e., the implementation fails to pass the testing), and stop.

Otherwise, assume the last output in the resulting output sequence is d, and do Step 5.

Step 5: If not(Si=a/d=>), then report "not(SdetI)", and stop. Otherwise, do Step 6.

Step 6: Construct a new OPNFSM SS from the original by deleting all transitions from Si with the

input a except for the transition with the label a/d. If the resulting SS is not a deterministic PFSM,

then go to Step 2. Otherwise, go to Step 7.

Step 7: Generate a test suite from SS using Algorithm 1, then apply the resulting test suite �to the

implementation. If SS�I, then report "(SdetI)"; otherwise, report "not(SdetI)". Stop.

We say the above procedure to be adaptive because the test selection depends on the result of

application of the formerly selected test cases. We use an example to explain the testing procedure.

Assume that the specification is the OPNFSM shown in Figure 1, and that the implementation I

 22/09/2012 Page 17

satisfies S'quasiI where S' is the PFSM shown in Figure 2. First, we find a nondeterministic state S0

in Step 2 with x=. By Steps 3 and 4, we derive a test sequence r.a . The last output in the resulting

output sequence must be e; then construct a new machine SS by deleting the transition from S0 to S2

with the label a/f. After repeating the above steps once again, we delete the transition from S2 to S2

with the label b/f. At this point, the resulting SS is the PFSM shown in Figure 2. According to Step

7, we generate a test suite from the SS, as shown in Section 3.1.

4. COMPARISON WITH OTHER RELATED WORK

Since FSMs and PFSMs are specific classes of OPNFSMs, our methods can be applied to them, to test

the equivalence and quasi-equivalence relations, respectively (see Theorem 1). We compare in this

section our method for OPNFSMs with the other test generation methods for different machines

[Fuji91, Vuon89, Sabn85, Nait81, Chow78, Vasi73, Petr91, Petr92, Evtu89], which also require a

"reliable" reset in the implementations (note, that simple experiments or checking sequences do not use

this assumption), as shown in Figure 3. When applied to such classes of machines, this method yields

usually smaller test suites with full fault coverage for each class of machines than the existing methods

for the same class which also assure full fault coverage.

Vuon89(UIOv), Fuji91(Wp),
Vasi73, Chow78(W), Petr92(FF)

Petr91, Evtu89
our methods

PFSMsFSMs

OPNFSMs

Sabn85(UIO)

 methods without full fault coverage

 methods with full fault coverage

Nait81(TT-method)

Figure 3. General comparison based on applicability and fault coverage

 22/09/2012 Page 18

When our method is applied to FSMs, the conformance relation to be tested is the equivalence, the

same as in the W-method [Vasi73, Chow78], the Wp-method [Fuji91], the UIO-method [Sabn85], the

UIOv-method [Vuon89], the FF-method [Petr92] and the TT-method (Transition tour) [Nait81]. The

UIO-method does not guarantee full fault coverage, as it has been pointed out in [Vuon89]; neither

does the TT-method. These methods have been justified by simulation on the basis of percentage of

fault coverage. UIOv- and FF- methods guarantee full fault coverage (i.e., check equivalence) only if

no malfunction causes an increase in the number of states. The W- and Wp-methods detect all faults

that may even increase the state number up to the given bound, and the latter produces, in general,

smaller test suite than the former [Fuji91].

The method given in Section 3.1 may be considered a generalization of the Wp-method [Fuji91], and

is, in particular, applicable to deterministic FSMs, which are a specific class of PFSMs. We note that

even for FSMs, our method is slightly different from the Wp-method. We do not require Wi⁄W as in

the Wp-method, instead, we only require Wi⁄pref(W). Since Wi⁄W implies Wi⁄pref(W) but not vice

versa, our method may produce shorter test cases than W- and Wp-methods.

Test generation for partial FSMs has received much less attention than that for completely-specified

FSMs. However, practical communication software are often modeled as partial machines. Some

authors proposed to complete the "don't care" state/input combinations of partial machines in

accordance with a so-called completeness assumption [Sabn85, Vuon89]. The assumption states that a

machine should be constructed in such a way that, for every state/input combination representing

"don't care", it produces a null or error output and either remains in the same state or goes into an

error state. However, in many cases, implementations are not constructed in the above way. In this

case, the completeness assumption cannot be satisfied. Methods for test suite generation from a

deterministic partial FSM were reported in [Evtu89, Petr91]. We note that neither the method given in

Section 3.1 nor method given in [Petr91] necessarily produces smaller test suites than the other.

However, our methods combine the ideas given in [Evtu89] and [Fuji90], can generate usually

 22/09/2012 Page 19

smaller test suites than the method given in [Evtu89], and are applicable to testing deterministic

machine implementations against their nondeterministic specifications.

5. CONCLUSION

We first present in this paper a method of generating test cases from partially-specified finite state

machines specifications. If a given PFSM is not minimal and its fuzziness degree is more than one,

then the lengths of test cases produced by our method grow rapidly when increases. Let n and m be

the numbers of states in a specification and its implementation, respectively. In the extreme case,

when n, the length of a test case can reach n6m, as shown in [Evtu89]. As to the multiplicity of

test suites produced by the method given in Section 3.1, the order is O(n3|Li|m-n+1). We then give a

method of generating test suites to check OPNFSM deterministic implementations against their

nondeterministic specifications. Our methods can be applied to test generation for the control portion

of the software written in SDL [Beli89] or ESTELLE.

APPENDIX : VALIDITY OF TEST METHOD

For the convenience of presentation, we make several conventions and definitions; then we give

several lemmas which are required for proving the Theorem 2.

Given a PFSM S (StS, Li, Lo, hS, S0) and an FSM I (StI, Li, Lo, hI, I0), we assume in the following:

(1) All states of S and I are reachable from the initial states S0 and I0, respectively.

(2) S has n states with n ≥ 2.

(3) M (StM, Li, Lo, hM, M0) is the prime machine of I, and may have at most m states with m≥n.

(4) Si, Sj, Sk, Sl, and Mi, Mj, Mk, Ml represent the states of S and M, respectively.

(5) A characterization set is W. A tuple of state identification sets is {W0, W1, ..., Wn-1}.

(6) the fuzziness degree of S is .

(7) a set ⁄Li* constructed from S such that: Si�St x�L* (xin� & S0=x=>Si).

 22/09/2012 Page 20

(8) = .({} Li)) and = \ .

(9) A test suite � which is constructed using Algorithm 1:

 � = �1�2

 where �1 = .({} Li Li2 Lim-n@W, and

 �2 = . Lim-n8{W0, W1, ..., Wn-1}.

Definitions of several notations

 notation meaning

 [Si,Mi] -u-> [Sj,Mj] For u�L, Si-u->Sj and Mi-u->Mj
 [Si,Mi] =x=> [Sj,Mj] For x�L*, Si=x=>Sj and Mi=x=>Mj
 [Si,Mi]-after-V Given a pair of states [Si,Mi]�StS StM, and a set V⁄Li*

 [Si,Mi]-after-V={[Sj,Mj] | x�L* (xin�V &

 [Si,Mi] =x=> [Sj,Mj])}
 =[S0, M0]-after-L*

 r r = {[Si,Mj] | [Si,Mj]� & Si=WMj}
 i i = {[Sk,Mk]| [Sk,Mk]� r & Sk�f(Si)}
 Lik Lik = {} Li Lik, when k1; and Li0 = {}.

It is easy to see r⁄ and | r|| |n6m.

LEMMA 1: For V⁄Li*, assume |[S0,M0]-after-V | k .

If | |>k, then |[S0,M0]-after-V.({} Li)| k+1; and if | |k, then

 [S0,M0]-after-V.({} Li) = [S0,M0]-after-V.

Proof:

(I) To prove that the lemma holds when | |>k.

The lemma holds when |[S0,M0]-after-V|k . Now consider the case that |[S0,M0]-after-V|k.

 statements reasons

(1) | | > k hypothesis

(2) |[S0,M0]-after-V | k hypothesis

(3) [S0,M0]-after-V⁄ definition of

 22/09/2012 Page 21

(4) [Si,Mi]� \[S0,M0]-after-V (1) & (2) & (3)

(5) [Sk-1,Mk-1]�[S0,M0]-after-V

 [Sk,Mk],[Si,Mi]� \[S0,M0]-after-V

 u�L x,y�L* such that: xin�V &

 ([S0,M0]=x=>[Sk-1,Mk-1]-u->[Sk,Mk]=y=>[Si,Mi] (4)

(6) [Sk,Mk]�[S0,M0]-after-V.({} Li))\[S0,M0]-after-V (5)

(7) |[S0,M0]-after-V.({} Li)| k+1 (6)

(II) To prove that the lemma holds when | |k.

(1) | | k hypothesis

(2) |[S0,M0]-after-V | k hypothesis

(3) [S0,M0]-after-V⁄ definition of

(4) [S0,M0]-after-V.({} Li) = [S0,M0]-after-V (1) & (2) &(3).

LEMMA 2: Assume S0= M0. If | |6m, then |[S0,M0]-after- .Lim-n| 6m;

 and if | |6m, then [S0,M0]-after- .Lim-n = .

Proof:

Since m≥n, Lim-n is always defined.

(I) To prove that the lemma holds when | |>6m.

(1) S0 M0 hypothesis

(2) | |>6m hypothesis

(3) |[S0,M0]-after- | n S is initially-connected & (1)

(4) |[S0,M0]-after- .Lim-n| 6m (2) & (3) & apply Lemma 1 6m-n times

(II) It is evident from Lemma 1 that the lemma also holds when | |6m.

LEMMA 3: For Si�StS, | i| m

Proof:

(1) |StM| =m hypothesis

(2) | i| >m assumption

 22/09/2012 Page 22

(3) [Sj,Mk],[Sl,Mk]� i (j�l & SjWMk & SlWMk) (1) & (2)

(4) SjWSl (3) & M is completely specified

(5) (4) is not true "definition of W" & "SjSl�f(Si)"

(6) | i| m (2) causes the contradiction between (4) and (5).

LEMMA 4: | r| 6m.

Proof:

Let E = {f(Si) | Si�StS}.

(1) =|E| definition of

(2) r⁄

f(Si)E i definition of r

(3) f(Si)�E (| i|m) Lemma 3

(4) | r|

f(Si)E | i| (2)

(5) | r| 6m (1) & (3) & (4).

LEMMA 5: If S0=�1M0, then [S0,M0]-after- .Lim-n = r.

Proof:

When | | 6m, the lemma is evident from Lemma 2. Now consider the case that | | 6m.

(1) S0=�1M0 hypothesis

(2) | | 6m hypothesis

(3) | [S0,M0]-after- .Lim-n | 6m (2) & Lemma 2

(4) [S0,M0]-after- .Lim-n⁄ r (1)

(5) | [S0,M0]-after- .Lim-n | | r| 6m (4) & Lemma 4

(6) | [S0,M0]-after- .Lim-n | | r| 6m (3) & (5)

(7) [S0,M0]-after- .Lim-n r (4) & (6).

LEMMA 6: If S0=�1M0, then [Si,Mk]� ([Sj,Mk]� r).

 22/09/2012 Page 23

Proof:

Let E = {f(Si) | Si�StS}, thus =|E|.

(1) S0=�1M0 hypothesis

(2) S0= M0 (1)

(3) if | || [S0,M0]-after-V|,

 then |[S0,M0]-after-V.({} Li)| |[S0,M0]-after-V|+1 the same reason as for Lemma 1

(4) |[S0,M0]-after- | n "S is initially-connected" & (2)

(5) not([Si,Mk]� ([Sj,Mk]� r)) assumption

(6) [S0,M0]-after- .Lim-n⁄ r⁄ & r� (1) & (5)

(7) | [S0,M0]-after- .Lim-n | 6m (4) & (6) & "apply (3) m-n times"

(8) | r|6m (6) & (7)

(9) Ml�StM [Si,Mj]� r (l�j) (5)

 consider such a Ml make a convention

(10) r⁄

f(Si)E i definition of r

(11) f(Si)�E (| i|m-1) (9) & the similar reason for Lemma 3

(12) | r|

f(Si)E | i| (10)

(13) | r| 6(m-1) (11) & (12) & =|E|.

(14) [Si,Mk]� ([Sj,Mk]� r) (5) causes the contradiction between (8) and (13).

LEMMA 7: If S0=�1M0, then [Si,Mk]� ([Si=WiMk]<==> [Si=WMk].

Proof:

(1) S0=�1M0 hypothesis

(2) [Si,Mk]� & Si=WiMk assumption

(3) Sj=WMk (2) & (1) & Lemma 6

(4) Si=WiSj (2) & (3) & Wi⁄pref(W)

(5) i=j (4) & definition of Wi

[Si,Mk]� ([Si=WiMk]==> [Si=WMk] (2) ==> (3) & (5)

 22/09/2012 Page 24

[Si,Mk]� ([Si=WiMk]<== [Si=WMk] definition of Wi

(8) [Si,Mk]� ([Si=WiMk]<==> [Si=WMk]

LEMMA 8: If S0=�M0, then [S0,M0]-after- .Lim-n = r = .

Proof:

(1) S0=�M0 hypothesis

(2) S0=�M0 (1)

(3) S0=�M0 (1)

(4) S0= M0 (1)

(5) [S0,M0]-after- .Lim-n⁄ r (3) & (2) & Lemma 7

(6) [S0,M0]-after- .Lim-n+1⁄ r (5) & (2) & = .({}Li)

(7) | |m assumption

(8) |[S0,M0]-after- .Lim-n+1|m+1 (7) & (4) & Lemma 2 & Lemma 1

(9) (7) is not true (6) & Lemma 3

(10) | |m (7) causes the contradiction between (7) and (9)

(11) [S0,M0]-after- .Lim-n+1= (10) & (4) & Lemma 2

(12) [S0,M0]-after- .Lim-n+1 r = (6) & (11) & r⁄

(13) [S0,M0]-after- .Lim-n r = (12) & Lemma 5.

LEMMA 9: If S0=�M0, then S0quasiM0.

Proof:

Note that [S0,M0]-after- .Lim-n+1 =[S0,M0]-after- .Lim-n.

(1) S0=�M0 hypothesis

(2) x�L*(if xin� .Lim-n and [S0,M0]=x=>[Sj,Mj],

 then (i) [Sj,Mj] is unique, and

 (ii) a�Li (Sj={a}Mj)) (1) & Lemma 8

(3) not (S0quasiM0) assumption

 22/09/2012 Page 25

(4) y�L* u�L [Si,Mi]� r such that yin� .Lim-n &

 [S0,M0]=y=>[Si,Mi] & Si-u-> & Mi\-u-> (3) & (1) & Lemma 8 &

(5) S0quasiM0 (3) causes the contradiction between (2) and (4).

LEMMA 10: S0=�M0 iff S0=�I0 .

Proof: Since I0=�M0, S0=�M0 implies S0=�I0. By the same reason,S0=�I0 implies S0=�M0.

REFERENCES

[Aho90] Alfred V. Aho, Barry S. Bosik and Stephen J.Griesmer, "Protocol Testing and Verification

within AT&T", AT&T Technical Journal, Vol.69, No.1, 1990, pp.4-6.

[AT&T90] AT&T Technical Journal, Special Issue on Protocol Testing and Verification, Vol.69,

No.1, 1990.

[Boch89] Gregor v. Bochmann, "Trace Analysis for Conformance and Arbitration Testing", IEEE

Transactions on Software Engineering, Vol. SE-15, No.11, 1989.

[Boch91] G.v. Bochmann, A. Das, R. Dssouli, M.Dubuc, A.Ghedamsi, and G.Luo, "Fault Models in

Testing", IFIP Transactions, Protocol Testing Systems IV (the Proceedings of IFIP TC6 Fourth

International Workshop on Protocol Test Systems), Ed. by Jan Kroon, Rudolf J. Heijink and Ed

Brinksma, 1992, North-Holland, pp.17-30.

[Boch92] G.v. Bochmann and Reinhard Gotzhein, "Specialization of Object Behaviors and

Requirement Specifications", in preparation.

[Beli89] F. Belina and D. Hogrefe, "The CCITT-Specification and Description Language SDL",

Computer Networks and ISDN Systems, Vol. 16, pp.311-341, 1989.

[Brin88] Ed Brinksma, "A Theory for the Derivation of Tests", IFIP Protocol Specification, Testing,

and Verification VIII, Ed. by S. Aggarwal and K. Sabnani, Elsevier Science Publishers B.V.(

North-Holland), 1988, pp.63-74.

[Budk87] S. Budkowski and P. Dembinski, "An Introduction to Estelle: A Specification Language for

Distributed Systems", Computer Networks and ISDN Systems, Vol. 14, No.1, 1987, pp.3-23.

 22/09/2012 Page 26

[Chow78] T.S.Chow, "Testing Software Design Modeled by Finite-State Machines, IEEE Transactions

on Software Engineering, Vol. SE-4, No.3, 1978.

[Evtu89] N. V. Evtushenko and A.F. Petrenko, "Fault-Detection Capability of Multiple Experiments",

Automatic Control and Computer Science, Allerton Press, Inc., New York, Vol.23, No.3, 1989,

pp.7-11.

[Fuji91] S.Fujiwara, G. v. Bochmann, F.Khendek, M.Amalou and A.Ghedamsi, "Test Selection Based

on Finite State Models", IEEE Transactions on Software Engineering, Vol SE-17, No.6, June,

1991, pp.591-603.

[Fuji91b] Susumu Fujiwara and Gregor von Bochmann, "Testing Nondeterministic Finite State

Machine with Fault Coverage", IFIP Transactions, Protocol Testing Systems IV (the Proceedings

of IFIP TC6 Fourth International Workshop on Protocol Test Systems, 1991), Ed. by Jan Kroon,

Rudolf J. Heijink and Ed Brinksma, 1992, North-Holland, pp.267-280.

[Fuji91c] S. Fujiwara and G. v. Bochmann, "Testing Nondeterministic Finite State Machine",

Publication #758 of D.I.R.O, University of Montreal, January 1991.

[Gill62] A. Gill, Introduction to the Theory of Finite-State Machines, New York: McGraw-Hill, 1962.

[Gone70] G. Gonenc, " A Method for Design of Fault Detection Experiments", IEEE Transactions on

Computer, Vol C-19, June, 1970, pp.551-558.

[Hopc79] John E.Hopcroft, Jeffery D.Ullman, Introduction to Automata Theory, Languages, and

Computation, 1979, Addison-Wesley Publishing Company, Inc., 418p.

[ISO9074] ISO, Estelle - A Formal Description Technique Based on an Extended Finite State

Transition Model, IS 9074.

[Lee91] D.Y. Lee and J.Y. Lee, "A Well-Defined Estelle Specification for the Automatic Test

Generation", IEEE Transactions on Computers, Vol.40, No.4, April, 1991, pp.526-542.

[Nait81] S.Naito and M.Tsunoyama, "Fault Detection for Sequential Machines by Transition Tours",

in Proc. FTCS (Fault Tolerant Comput. Syst.), 1981, pp.238-243.

[Petr91] Alexandre Petrenko, "Checking Experiments with Protocol Machines", IFIP Transactions,

Protocol Testing Systems IV (the Proceedings of IFIP TC6 Fourth International Workshop on

 22/09/2012 Page 27

Protocol Test Systems, 1991), Ed. by Jan Kroon, Rudolf J. Heijink and Ed Brinksma, 1992, North-

Holland, pp.83-94.

[Petr92] Alexandre Petrenko and Nina Yevtushenko, "Test Suite Generation for a FSM with a Given

Type of Implementation Errors", IFIP 12th International Symposium on Protocol Specification,

Testing, and Verification, (participant's proceedings), U.S.A., 1992.

[Pitt90] D. H. Pitt and D. Freestone, "The Derivation of Conformance Tests from Lotos

Specifications", IEEE Transactions on Software Engineering, Vol.16, No.12, Dec. 1990, pp.1337-

1343.

[Rayn87] D. Rayner, "OSI Conformance Testing", Computer Networks and ISDN Systems, Vol.14,

No.1, 1987, pp.79-89.

[Sabn85] K.Sabnani & A.T.Dahbura, "A New Technique for Generating Protocol Tests", ACM

Computer Communication Review, Vol.15, No.4, 1985, pp.36-43.

[Sari84] Behcet Sarikaya and Gregor v. Bochmann, "Synchronization and Specification Issues in

Protocol Testing", IEEE Transactions on Communications, Vol. COM-32, No.4, April 1984,

pp.389-395.

[Sari87] B. Sarikaya, G.v. Bochmann, and E. Cerny, "A Test Design Methodology for Protocol

Testing", IEEE Transactions on Software Engineering, Vol.13, No.9, Sept.. 1987, pp.989-999.

[Sidh89] D. P. Sidhu and T. K. Leung, "Formal Methods for Protocol Testing: A Detailed Study",

IEEE Transactions on Software Engineering, Vol SE-15, No.4, April, 1989, pp.413-426.

[Star72] P.H. Starke, Abstract Automata, North-Holland/American Elsevier, 1972, 419p.

[Vasi73] M. P. Vasilevskii, "Failure Diagnosis of Automata", Cybernetics, Plenum Publishing

Corporation, New York, No.4, 1973, pp.653--665.

[Vuon89] S. T. Vuong, W.W.L. Chan, and M.R. Ito, "The UIOv-method for Protocol Test Sequence

Generation", Proceedings of IFIP TC6 Second International Workshop on Protocol Testing

Systems, Ed. by Jan de Meer, Lothar Machert and Wolfgang Effelsberg, 1989, North-Holland,

pp.161-175.

